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Abstract

Motivation:Microarray techniques provide a valuable way of characterizing the molec-
ular nature of disease. Unofortunately expense and limited specimin availability often
lead to studies with small sample sizes. This makes accurate estimation of within
gene variance difficult, since variance estimates made on a gene by gene basis will
have few degrees of freedom, and the assumption that all genes share equal varaince
is incorrect.

Results: We propose a model by which the within gene varainces are drawn
from a inverse gaussian distribution, whose parameters are estimated across all genes.
This results in a test statistic that is a minor variation of those used in standard linear
models. We demonstrate that the model assumptions are valid on experimental data,
and has more power than standard tests to pick up large changes in expression, while

not increasing the rate of false positives.



1 Introduction

Microarray technology allows a scientist to view the expression of thousands of genes
from an experimental sample simultaneously. By observing changes in expression
levels across multiple samples it is possible to generate and test a multitude of hy-
potheses relating gene expression to other characteristics of the samples. One of the
primary goals of microarray analysis is to identify genes whose expression level varies
between different classes of samples. Testing whether a single observed quantity
varies across different classes of observations is a problem that is well understood,
but the volume of information available on each sample creates new analysis chal-
lenges.

In modeling gene expression we use a linear model framework. This model is
very versatile, and can be applied to a large number of different experimental designs.
Further, other familiar tests such as the t-test, paired t-test and F-test, and Analysis
of Variance (ANOVA) are actually special cases of the more general linear model.
Kerr and Churchill (2001) suggested the application of ANOVA to the red and green
log intensity values as an alternative to the use of log ratios. But even at the level
of log ratio data, use of an ANOVA type model can provide a very powerful analysis
framework, allowing the researcher to account for multiple competing factors that
might influence gene expression.

A question that arrises when fitting a linear model to microarray data is what



estimate to use for the variance of the residual error. One approach is to form a
single linear model that pools the residual sum of squares across all genes into a single
variance estimate. This method makes the assumption that once all of the factors
included in the model have been taken into account, all genes are equally variable.
In practice we find that this is not a valid assumption. It is impossible to take into
account all reasons for genetic variation in a single linear model. Those factors that
have not been taken into account will vary from gene to gene, and be incorporated
into the residual, leading to large differences in the residual variance across genes. A
second approach is to form a separate linear model for each gene, and estimate the
gene-specific residual variance using only the data from that gene. This method has
the disadvantage that there is no information shared between genes. If the sample
size is small, there may be very few degrees of freedom available to estimate the
residual variance, leading to statistical tests with low power.

We propose a hybrid approach, in which it is assumed that the variance of the
residuals change from gene to gene, but represent random selections from a single
distribution. By observing the residual sum of squares within each gene,we estimate
the form of this distribution. Then for an individual gene we adjust the observed
residual sum of squares in light of the distribution. By sharing the variance estimate
across multiple genes, we can form a better estimate for the true residual variance of

a given gene, and effectively boost the residual degrees of freedom. The test statistics



produced by this shared variance model are very similar in form to those for standard
linear models, meaning that this model can be easily implemented using standard

statistical packages.

2 Model formulation

We will denote by y;; the normalized expression values for sample 7 and gene j. How
the expression values are actually formulated will depend on the application. If
we wish to follow the methodology of Kerr and Churchill., then the y;; will represent
normalized log intensity values of a single channel. Alternatively, the y;; can represent
the normalized log-ratios of a 2 color array, or normalized log signal for Affymetrix
GeneChip ™ Arrays

The type of model we wish to consider is the following
Yij = m;ﬂj + €5 (1)

The z;’s are vectors of design variables specific to the sample, the 3,’s are vectors of
unknown coefficients that are specific to a particular gene, and the ¢;;’s are unobserved
residuals with mean 0 and unknown variance. The z;’s represent the characteristics
of the samples that we wish correlate with gene expression. For notational simplicity
we have suppressed the intercept term that is often included in linear models. But
if required this can be represented by setting the first component of each z; vector
to be identically equal to 1, in which case the first component of the 8 vector will be
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the intercept.

In practice the investigator is often interested in determining the gene expression
between two or more classes, in which case the z} will vectors of class indicators. For
example when testing between treated and untreated samples, the first component
would be 1 for the treated cases and 0 for the untreated cases, while the second
component would be 0 for the treated cases and 1 for the untreated cases. Models
involving more than 2 classes can be represented by increasing the dimension of x;.
This model is not restricted just to class comparison problems. For example, it may
be reasonable to consider fitting a regression of gene expression against time, in which
case z; could be the continuous variable representing elapsed time.

The 3,;’s are variables that connect the sample characteristics to the expression
of a single gene. For example in the case of treated and untreated samples outlined
above, the first component of each §8; would represent the average expression of
gene j for the treated cases, while the second component would represent the average
expression for the untreated cases.

Let n denote the number of samples, m denote the number of genes, and k& denote
the dimension of each z; and 8;. We use X to denote the n x k dimensional design
matrix whose columns are x;, and make the additional simplifying assumption that
X is of full rank. For X not of full rank it is always possible to reparameterize the

model into a lower dimensional model with X of full rank.



The crux of our model is in the handling of the ¢;;’s. We assume that for each
gene j,

Eij N (0, O'?) (2)

with the a? ’s being random variables themselves with an inverse Gamma, distribution.

That is

1%L exp(—z/b)
T(a)b" 3)

P(07? =12) ~ G(z;a,b) =

for some unknown parameters a and b.  This choice of the Inverse-Gamma distri-
bution as a prior distribution of variance is a standard choice in Bayesian analysis
due to its computational convenience, but as we will show later, it models true vari-
ance structure of microarray data surprisingly well. We will refer the linear model
described above as the Randomized Variance Model, or RVM.

This use of a distribution for ¢ is similar to a model suggested by Baldi and Long
(2001) with some exceptions. First, our analysis is frequentist perspective rather
Bayesian. Second, we consider the more general case of linear models, while Baldi
and Long concentrated on a 2 class distinction. Third, we make the assumption that
the a and b parameters in the prior of 032., are the same for all genes, and show how
they can be estimated from the data. Finally, we make no assumptions about a prior
distribution for 8;. This was a conscious decision on our part since the distribution
of B depends on how the genes on the array were chosen. A significant proportion

of the genes on the array are likely to have constant expression across samples. Any



prior distribution on the mean structure would have to include a singular component
at zero, and any hypothesis tests on # would be heavily dependent on the choice of

prior.

3 Linear Hypothesis testing for 3

Hypothesis tests for 8; will be performed on a gene by gene basis, therefore in this
section and the next, we will suppress the j subscript, and concern ourselves with
tests of a single gene. In these sections we will also make the temporary assumption
that the parameters a and b are known constants. In a later section we will show
how to use the full set of data to estimate values for a and b, and argue that the
substitution of these estimates for the true values will not invalidate the tests. For
the sake of brevity, mathematical proofs of all claims have been omitted, but are
available in the supplementary materials.

Following the standard framework of hypotheses on linear models, we wish to
test the hypothesis Hy : 3 € w, where w is a linear subspace of R¥. We will use
r = k — dim(w) to denote the number of linear constraints imposed by w. In class
comparison problems, the subspace is likely to be that all of the components of 5 are
equal; representing that all classes have the same average expression. In that case r
will be equal to the number of classes minus 1. In regression problems, the constraint

will be that some of the components of # are equal to zero, meaning that change in



the respective component of x; has no effect on gene expression.
In standard linear models in which there is no distribution for o, the maximum

likelihood estimate for 3 over R* is given by
B=(X'X)"Xy (4)
and the maximums likelihood estimate under w, is
B= (X, X.) Xy (5)

where X, represents the design matrix X projected into the subspace w.
To test of the hypothesis, Hy : 3 € w against the alternative H, : 3 € R*F we
would consider the respective sum of square residuals,

‘2 2112

gs’:Hy—X’B ,and?SzHy—X'ﬂ‘ (6)

and then the likelihood ratio test statistic would be

_n—k??—gg

F —
T SS

(7)

which under Hy has an F distribution with r and n — k degrees of freedom.

If we repeat this type of analysis under the RVM assumption of a distribution for
o2, expressed in equation (3) we obtain the same maximum likelihood estimates, B
and é, for 8 within R* and w respectively, but there is a change in the likelihood ratio
test statistic. The residual sum of squares in the denominator of the F is replaced
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with
55 =2585+2b7! (8)
and the number of degrees of freedom in the denominator change from n — k to

n — k + 2a. Thus the adjusted statistic becomes

n—=k+2a (?E—E\S)

F=— (9)

SS

which under Hy will have F' distribution with » and n — k + 2a degrees of freedom
(see supplementary material).

To interpret this change, it is useful to consider

SS SS
~2 ~2
o —n_kanda =kt % (10)

which are the maximum likelihood estimates for 02 under the standard linear model

and under RVM. After some algebra we find that

52 _ (n — k)32 + 2a (ab) ™"
B (n—k)+2a

(11)

ab is the mean value for =2 under its distribution, so (ab)_1 could be thought of as
an estimate of 02 based on the shared variance distribution, and * as a weighted
average of this and the sample variance for the specific gene. The degree to which
each of these is weighted, depends on the number of samples, and the parameter a.
The larger the sample size the more confident we will be in % our sample estimate

2

of o°. On the other hand, large values for a will indicate a highly peaked Gamma

11



distribution, making it more likely that the true o? is close to (ab)_1 . The increase in
the degrees of freedom from n — k to n — k 4 2a, indicates the additional information
about o2 provided by the distribution. Again a larger value for a represents a more
informative distribution and so more certainty about & as an estimate of o2, that in

turn translates as more degrees of freedom.

4 Application to t and F tests and ANOVA

A very common problem in micro array analysis is that of determining genes that are
differentially expressed between 2 or more tissue varieties. To represent this in our
framework, we set k equal to the number of groups, and set the pth component X;
to an indicator of membership of sample j in variety p. Just as our hypothesis tests
for the linear model under the RVM assumption was similar to the standard tests for
linear models, so also are our tests for differences across varieties of similar form to
the t and F' tests that are often used.

For testing between 2 varieties, with sample means [i;, [i,, sample variances 8?,

52, and sample sizes 1, ny the standard test statistic is

(n1 — 1)61 + (TLQ — 1)&1
ny +no — 2

H1 — o
~ 1 1
Opooled[ 7, + o

and this has a t distribution with n — 2 degrees of freedom.

t=

(12)

where  Opooled =
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In the case of the RVM model,

ﬁ'l — ﬁz where 5 — (’I’L B 2)612)ooled + 26~
’ (n—2)+2a

(13)

and the degrees of freedom increase to n — 2 + 2a.
For testing k >2 varieties, it is common to consider the following F-test statistic,

involving mean sums of squares (MSS)

_ MSS(between varieties)
~ MSS(within varieties)

F (14)

which under the null hypothesis has an F' distribution with k¥ — 1 and n — k degrees

of freedom. The RVM model is this case will be identical with the exception that

~ — k)MSS(withi ieti 2b~1
MSS(within varieties) = (n— k) SSEWI ]lcr)l _\'/_a;le fes) + (15)
n— a

replaces MSS(within varieties), and the degrees of freedom for the denominator of
the F' statistic becomes n — k + 2a, instead of n — k, (See supplementary material)

For more complicated ANOVA models, such as Latin square designs, interaction
effects, or models involving nested effects, the tests in the case of RVM are identical
to those in the classical ANOVA case, with the exception that the residual sum
of squares is increased by the amount 2b~!, and the residual degrees of freedom is

increased by 2a.
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5 Estimation of a,b

In the previous sections we assumed complete knowledge of @ and b. In practice this
will not be the case, and so a, and b must be estimated. Use of estimated a and b in
the tests of the previous section will violate the strict frequentist formulation that we
have used so far. However, unlike o; and ;, the values a and b are constant across
genes, and so it is possible to use the data from all of genes to form an estimate.
This means that our estimates of these parameters can be based on thousands of
data points and can in principal be extremely accurate. Also the RVM tests are not
very sensitive to the exact values of a and b. For this reason we can use substitute
estimated values for a, and b in the above tests without invalidating them.

To estimate a and b we consider 632. = 55;/(n — k) the empirical estimates of 3.

It can be shown (see supplementary material) that under the assumptions of RVM

ab (83) ~ Finr)2a (16)

Therefore we can estimate the parameters a and b by fitting an F' distribution to the
observed 332-.

Although computationally simpler, we recommend against using a method of mo-
ments estimator. The higher moments of the F' distribution are infinite, and so such
an estimator will be unstable. Instead we recommend numerically maximizing the

likelihood under the F' distribution with respect to a, and . This provided much
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more accurate estimates for a and b, and while computationally intensive, was not
overly so, since this estimation needs to be performed only once for the entire data

set.

6 Simulation results

To evaluate the tests presented, we generated 2000 simulated data sets, of the expres-
sions of 6000 genes from 2 groups of 5 For each gene, a random ajz. value was chosen
from an inverse gamma distribution with a = 3, b = 1. The a? values were chosen
separately for each data set. Independent normally distributed random numbers with
mean ( and variances were then assigned as gene expression values. We chose the
values a = 3, b = 1 because estimates of @ and b in actual microarray data were found
to be in the vicinity of these values. For 3000 of these genes, an amount between
0.1 and 2.0 was added to the expression of samples from the first group (150 genes
at every 0.1 units between 0.1 and 2.0). These 3000 genes would represent genes
that were truly differentially expressed between the two groups. The remaining 3000
genes would represent non-differentially expressed genes. This procedure was then
repeated for an additional 2000 data sets, with 10 samples in each set.

For each gene in each data set, we tested for mean differences between sample
groups according to 3 different one-sided t-tests. For the first t-test, a pooled variance

estimate across the 6000 genes included in the data set was used, and the t statistic
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was assumed to have infinite degrees of freedom. For the second t-test, the variance
estimate was made separately within each gene, and 8 degrees of freedom were used.
For the final t-test we estimated a and b from the observed residual variances for the
data set, and then used the modified t-test presented in equation 13.

Table 1 shows the mean and variance over the 4000 simulations of the values esti-
mated for a and b,first by method of moments and then by Maximum likelihood. We
observe that the Maximum likelihood estimates were unbiased, and had low variance,
as opposed to the Method of moments estimates which were highly variable, even
when based on a large number of genes. We observed that there was a strong inverse
correlation between our estimates of a and of b, .such that ab~! was estimated with
extreme accurately In light of equation (11), the estimation of b is important only
in so far as ab™! is estimated accurately. Therefor any error in our statistic through
inaccurate estimation of a and b will really be through the mis-estimation of a.

Table 2, shows the proportion of false positives, (i.e. non-differentially expressed
genes that the test declared to be differentially expressed) for each of the tests at
different levels. We observe that both the RVM test, and the t-test with the variances
estimated within individual genes, appear to have the proper false positive rates.
However, using a single value for all variances results in an exesive false-postitive
rate. This is due to the fact that highly variable genes, may exhibit large fold

differences even when they are not actually differentially expressed. When these fold
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differences are then divided by the relatively small pooled residual variance estimate,
they will appear significant.

Figure 1 shows the power for detecting true differences between groups accord-
ing to RVM t-test, and the standard t-test in which the variances were computed
individually for each gene. The X axis represents the true difference between the
means of the two groups, and the Y axis shows the proportion of such genes that
were found to be significant at P=0.01 and P=0.001. Power estimates for the test
in which the variance was pooled across genes were not included since this test failed
to control type one error and so was not comparable to the other tests. We observe
that the RVM t-test generally performed better than the standard t-test, particularly
when there was a large difference between the two groups, and a very small p-value
was required for significance. The difference was less prominent when there were 10
samples in each group than when there were 5 samples in each group. This is due to
the fact that as sample size increases, the RVM test statistic approaches the standard

t-statistic.

7 Experimental results

Although the RVM test performed well in simulations in which the model assumptions
held exactly, we needed determine how well the model assumptions hold in actual
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data. To check this, we looked at two different sets of data. The first set (referred
to as the DLBCL data set) came from Rosenwald et. al. (2002) and included 7399
genes measured on 274 Lymphoma samples which were divided into three groups
(ABC, GCB, Type 3) according to their gene expression values. The second set
(referred to as the BRCA data set) from Hedenfalk et. al. (2001) included 3226
genes measured on 22 breast cancer samples, which were also divided into 3 classes
(Sporadic, BRCA-1 and BRCA-2) according to their mutational status.

The primary assumption made by the RVM model is that the within group vari-
ance is distributed according to an inverse gamma distribution. This choice of
distribution was made purely for computational convenience, and there is no intrinsic
reason why the gene variances should follow this distribution. Since we are unable to
observe the true within group variances directly to determine whether they followed
a inverse gamma, we instead observed the sample variances to determine the extent
to which they could be fitted to the F' distribution described in equation (16) as
should be the case if the true variances followed the inverse gamma distribution. We
found that in both data sets, the distribution of the observed residuals was virtually
indistinguishable from the corresponding F' distributions with fitted parameters, (Fig
2) Implied by our model assumptions. Other data sets have also been investigated,
(data not shown) and in each case the F distribution appears to be a very good fit

to the observed residuals.
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In order to check the relative type 1 and type 2 errors of the various tests we re-
stricted ourselves to the DLBCL data, and in particular the 83 ABC patients and 134
GCB patients. With such a large sample size we can determine with great accuracy
which genes were truly differentially expressed between these two groups, and the
size of the difference. By selecting small subsets of these groups, we can determine
the extent to which the various methods can detect the differentially expressed genes
in small samples, while controlling the number of non-differentially expressed genes
found to be significant. We repeatedly took sub-samples of size 10 (5 GCB, 5 ABC)
and 20 (10 GCB, 10 ABC) an calculated for each gene the p-value for a the difference
between the samples observed for the 2 sets. This was repeated 2000 times, and the
proportion of times the gene was found to be significant at p={0.001, 0.005, 0.01}
was recorded.

To avoid having subsets in which no data for a gene was available, we excluded
all those that were missing values in more than 20% of the total data. This resulted
in 6,027 genes. A t-test was performed on the entire data set to determine those
genes that were truly differentially expressed between the two groups. This test
resulted in 1,621 genes were found to be significant at the 0.001 level were declared
differentially expressed and used to compute power, while 2,916 genes had a p-value
greater than 0.05, were declared non-differentially expressed and used to compute

the false positive rates. The remaining 1,490 gene were on the border line between
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differentially expressed and non-differentially expressed, were not used in any of the
power or type 1 error calculations. In order to consider the effect of true fold
difference in our ability to detect genes, we calculated for each gene the mean log
ratio within the ABC and GCB subtypes on the total data, then used the difference
between these two means rounded to the nearest 0.1.

The results of this analysis are similar to what we found in the simulation. The
type 1 error of the t-test and random variance tests are very close to the desired
values in both the 10 sample and 20 sample subsets, while the constant variance
model had a much larger type 1 error rate than was desired, indicating that this
test was invalid (Table 3). Again we also observe that the RVM model preforms
much better than the t-test in identifying those genes with large true fold differences

between classes.

8 Discussion

Analysis of microarray data clearly indicates that all genes are not equally variant
within a sample, therefore some method of estimating an individual gene’s variability
must be taken into account when determining statistical significance. While directly
estimating the variance within each gene works well for large samples, when the
sample size is small such an estimate can be imprecise resulting in a test of low

power. We have proposed a model through which information from the entire set of
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genes is used to influence the variance estimate of a single gene, while still allowing
the differences in gene variances. This model can be applied to any linear regression
framework, and so is very versatile

This model has the advantage that it is very simple to implement, requiring only
slight modifications to tests that are already available in most statistical packages.
We have demonstrated that the underlying assumption of our model, that the within
gene variances are distributed according to an inverse gamma distribution , appear
to be correct in actual experimental data. As a result, our model correctly controls
type 1 error, in these experimental situations. Our method has greater power than
does the standard t-test in detecting genes with large fold differences. Since these
are the genes that are most likely to be of biological interest, we feel that this new
method provides an easily implemented improvement to standard techniques where

genes are analyzed individually.
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